Global Precipitation Measurement

System Requirements Review Mission Overview

Jim Adams 301/286-2508 jim.adams@gsfc.nasa.gov Goddard Space Flight Center

June 4 - 5, 2002

- 8
- EOS-9 Endorsed at EOS Planning Workshop, 1998
- Design Center Studies, 1999-2001
 - 2 IMDC Sessions
 - 2 ISAL Runs
 - 1 Team X Study
 - 4 RSDO Studies
 - 1 Core In-House Feasibility Study
- FY01 Advanced Study
 - Examined Options for All Elements
 - Refined Recommended Approach
- FY02 Begin Formulation
 - Partnerships
 - Programmatics and Management Planning
 - System Requirements Definition

0

•~400 km Altitude •~4 km Horizontal Resolution

• Multi-frequency Radiometer

• Non-Sun Synchronous Orbit

• 250 m Vertical Resolution

Provide Training for

Primary Satellite

• H2-A Launch

• ~65° Inclination

• Dual Frequency Radar

• TRMM-like Spacecraft

OBJECTIVE: Understand the Horizontal and Vertical Structure of Rainfall and Its Microphysical Element. Constellation Radiometers.

OBJECTIVE: Provide Enough Sampling to Reduce Uncertainty in Short-term Rainfall Accumulations. Extend Scientific and Societal Applications.

Constellation Satellites

- Multiple Satellites with Microwave Radiometers
- Sampling Sufficient to Resolve the Diurnal Cycle
- Sun-Synchronous Polar Orbits
- •~600 km Altitude

Precipitation Validation Sites

- Ground Truth and Calibration
- Cooperative International Research

Global Precipitation Processing Sustem

- Capable of Producing Global Precipitation Data Products from Diverse Sensors and Sources
- Cooperative International **Partnerships**

0 B

Σ

ш

~

S

Ø

ш

z

0

Ø

۵

æ

Δ.

Ø

8

0

Constellation Build-Up

G O D D A R D S P A C E F L I G H T C E N T E R

Σ

5/31/02

A

8

0

• International Partnerships

- Japan critical to mission success
 - Follows same model as TRMM
- Data streams
 - No hardware exchange planned
 - Base mission requires only NASA and IPO data streams

• Science Data Processing Multiple Asynchronous Data Streams from Diverse Sensors

- Evolve from TSDIS design
- SEEDS/IPDS/PPS accelerated implementation retires GPM risk early
- Trial runs with
 - AMSR
 - Megha-Tropiques
 - Coriolis (possible)

Names

Core = Primary spacecraft

• Core Spacecraft Mass Allocation In-Flux

- NASA currently using 3200 kg, NASDA recent update of H-IIA 3000 kg
- Solutions Exist

• Calibration and Error Characterization (Ground Instrumentation)

- Approach needs better definition before preliminary design starts
- *Not significant on space segments*
- Science Working Group established
- Field experiments planned

